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Credit: Andrew Ng, Machine Learning 

Introducing Unsupervised Learning

https://www.coursera.org/learn/machine-learning/home/week/1


Unsupervised Learning

Clustering
Dimension reduction  
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https://www.coursera.org/learn/machine-learning/home/week/1


Grouping Customers

Credit: Andrew Ng, Machine Learning 

https://www.coursera.org/learn/machine-learning/home/week/1


Anomaly Detection

Credit: Anomaly Detection

https://towardsdatascience.com/unsupervised-anomaly-detection-on-spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7


Unsupervised Learning

Clustering
Dimension reduction  



Comfort

Fashion

really 
terrible

clusters can tell us specifics about the relationship of data
…even if they are unlabeled! unsupervised 

learning!

how do we find the 
clusters?

K-means clustering



Comfort

Fashion

1. pick a K-number of 
clusters
2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it

k=6
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4.move the centroid to 
the weighted geometric 
center of samples 
assigned to it
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k=65. Repeat 3-4 until 
centroids stop moving!

4.move the centroid to 
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center of samples 
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1. pick a K-number of 
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2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it



Comfort

Fashion

k=
6 Did we get back 

the same clusters?
Nope. And that’s 

OK.

5. Repeat 3-4 until 
centroids stop moving!

4.move the centroid to 
the weighted geometric 
center of samples 
assigned to it

1. pick a K-number of 
clusters
2. randomly pick a series 
of “centroids”
3. assign each particle to 
the centroid closest to it



Did we get back the same clusters?
Nope. And that’s OK.

K-means is an indeterministic algorithm—it has built-in randomness



Evaluation and Choosing K



Unsupervised Learning

Clustering
Dimension reduction  



Unsupervised Learning

Why Dimension reduction?  



Motivation for Dimension Reduction
Complex systems often must be modeled with large datasets, having dozens to millions 
of columns.

Often, several columns can be adding similar information to the model. So, there is a 
certain level of redundancy.

Additionally, datasets with too many features may be difficult to represent graphically.Individual  Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Four dimensions; 
can’t even be 
graphed!



Motivation for Dimension Reduction

Individual  Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

What if I have a lot of 
features, but not a lot of 

samples? 



Motivation for Dimension Reduction

Individual  Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

So, how do we reduce 
dimensionality without 

significant loss of 
information?



Enter…
Principal Component Analysis



Principle Component Analysis

transform high-dimensional data 
into a new coordinate system, 
where the new features (principal 
components) are orthogonal 
(uncorrelated) and sorted in 
decreasing order of variance.



Exploring Dimensions and Basis Vectors

x

y

z

(2,3,1)

(2,3,1) is a datapoint.
2
3
1

 is the vector to said datapoint.

Dimension = # of features



Exploring Dimensions and Basis Vectors

x

y
y=x

y=-x
This gray point can be expressed as 
3 blocks on x axis and 2 blocks on 
the y axis.

It can also be expressed as 1 block 
on y = -x and 3 blocks on y=x



Projection

The projection of the 
point A on the purple 
line.

The projection (A’) of a 
point A on a particular line 
p is the point such that 
the line  AA’ is 
perpendicular to p.

(0,0)

A

A’

p



Principal Component Analysis

We can represent all 
data points along x,y,z 
axes in terms of new 
basis vectors PC1, PC2, 
and PC3.

PC1

PC2

x

z

y

PC3



Principal Component Analysis

3-dimensional graph 
reduced to 2-
dimensional graph 
across different basis 
vectors (“principal 
components”)

PC1

PC2

x

z

y



Principal Component Analysis
How do we decide which PCs 
to drop when reducing the 
dimensionality of the data?



Principal Components
Think of these as new axes that we are orienting our data across.

So instead of x,y, z, rather some linear combination of them.

They are done such that each principal component is uncorrelated with the 
others, so that translation across each component indicates different information. 
So, they represent directions of maximal variance.

This allows differences between data points to become more prominent

How do we decide which PCs 
to remove when reducing the 
dimensionality of the data?

Represents percentage 
of variance for each PC. 
Notice how PC1 has the 
most and it drops after 
that. Since PC3 accounts for a 

very small percentage of 
overall variance, we can 
remove it. This is how PCA 
reduces dimensionality
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Principal Component Analysis

How do we decide the PCs?



Principal Component Analysis



Principal Component Analysis

Notice how the points 
spread out from each 
other and from the 
origin.



Principal Component Analysis



Principal Component Analysis

We can quantify the 
“spread” of the points by 
measuring the sum of the 
distances of these points 
from the origin

1st base or “Principal 
Component 1”. Line 
that maximizes sum of 
distances of projections 
of points from origin. In 
essence, maximizes 
variance of distribution.



Principal Component Analysis

Maximizing the variance along 
the line

Built using 
https://gist.github.com/anonymous/7d888663c6ec679ea654287
15b99bfdd



Principal Component Analysis

Maximizing the variance along 
the line



Principal Component Analysis

Keep going



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Standardization

Individual Height (cm) Weight (kg) Income ($) Number of 
Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Compare the data of each of the 4 columns. How do they 
differ numerically?



Standardization
Individual Height (cm) Weight (kg) Income ($) Number of 

Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4

Compare the data of each of the 4 columns. How do they 
differ numerically?

Their range varies drastically. Consequently, their 
variances are very different.

Range 159-189 63-89 50,000-110,000 1-5
Variance 161.76 135.87 564166666 2.7



Standardization
Individual Height (cm) Weight (kg) Income ($) Number of 

Children

Person A 165 65 60,000 2

Person B 168 63 100,000 5

Person C 159 82 50,000 1

Person D 183 68 90,000 4

Person E 187 87 110,000 5

Person F 189 89 95,000 4
Range 159-189 63-89 50k-100k 1-5

Variance 161.76 135.87 564166670 2.7
If this is not addressed, some of the feature columns will dominate over the other ones. 

This can bias the results and final principal component analysis; making it difficult to view 
differences between values in one column compared to another.

So final graph may have the differences between the weights of various persons be 
miniscule.



Standardization
So, how do we adjust our data 
so these differences are not 

as drastic?



Standardization

Recap: we want to put different variables on the same scale.

This can mean many things from giving them the same mean and standard deviation, to 
keeping the range consistent, and so on.

Here, we will use a method called z-scoring.
The rescaled 
distribution will have a 
mean of 0 and standard 
deviation of 1

Note: it does not mean the new data follow Normal distribution



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Covariance Matrix Calculation

Covariance is really just a measure of how correlated two variables/features are. 

If your covariance is positive, that means there’s a positive correlation.

If your covariance is positive, that means there’s a negative correlation.

𝐶𝑜𝑣 𝑥, 𝑦 =+
(𝑥! 	− 	 𝑥̅)(𝑦! 	− 	 1𝑦)

𝑁 − 1



Covariance Matrix Calculation

What should our new features 
look like?

Make new features with high variance.

Pick new features with low correlation to other features.

Review: Lecture 7; feature engineering



Covariance Matrix Calculation

𝐶𝑜𝑣 𝑥, 𝑦 =)
(𝑥! 	− 	 𝑥̅)(𝑦! 	− 	 /𝑦)

𝑁 − 1

Can measure this correlation using covariance. If covariance is positive, then features are 
correlated in the sense they both increase together. If covariance is negative, then 
features are inversely correlated.



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Eigenvector Calculation

We can think of matrices as transformations of vectors.

When you multiply a matrix with a vector; two things happen:

1. It scales the vector.

2. It rotates the vector

(1,2)

1	2
2	1

1
2 = 5

4



Eigenvector Calculation

We can think of matrices as transformations of vectors.

When you multiply a matrix with a vector; two things happen:

1. It scales the vector.

2. It rotates the vector

(5,4)

1	2
2	1

1
2 = 5

4



Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or 
transformation.

Graphically speaking, when you multiply a matrix with its specific 
eigenvectors, the eigenvectors don’t get rotated, only scaled.

(1,1)
1	2
2	1

1
1 = 3

3  = 3 1
1



Eigenvector Calculation

Eigenvectors are characteristic vectors specific to a matrix or 
transformation.

Graphically speaking, when you multiply a matrix with its specific 
eigenvectors, the eigenvectors don’t get rotated, only scaled.

(3,3)

1	2
2	1

1
1 = 3

3  = 3 1
1

The factor by which an 
eigenvector is scaled is 
called its eigenvalue



Eigenvector Calculation

(1,1)

1	2
2	1

1
1 = 3

3  = 3 1
1

(-1,1)

1	2
2	1

−1
1 = 1

−1  = −1 −1
1



Eigenvector Calculation

(3,3)

1	2
2	1

1
1 = 3

3  = 3 1
1

(1,-1)

1	2
2	1

−1
1 = 1

−1  = −1 −1
1



Eigenvector Calculation

Eigenvectors  act as basis vectors! 

Every point in 2-D can be 
expressed as some combination 
of (1,1) and (-1,1).

The two eigenvectors are 
perpendicular to each 
other!



Eigenvector Calculation

Fixed 
acidity

Citric 
acid

Eigenvector 1

Eigenvector 2



Eigenvector Calculation

What matrix do we find the 
eigenvectors of to get our 

“new features” in PCA?



Eigenvector Calculation

By calculating the eigenvectors of the covariance matrix, we can get our principal 
components. 

We use the eigenvectors to create a basis for the graph. These basis vectors represent the 
principal components.

Since these are eigenvectors of the covariance matrix, they represent directions of 
maximal variance.

𝐴𝑣 = 	𝜆𝑣A =

v is the eigenvector and 
lambda is the eigenvalue



Eigenvector Calculation

𝐴𝑣 = 	𝜆𝑣

𝐴 =	𝐴𝑣 − 	𝜆𝑣 = 0
(𝐴 − 	𝜆)𝑣 = 0
|𝐴 − 	𝜆| = 0

When you find the root of the resulting polynomial, you 
will find all the possible eigenvalues. For each eigenvalue, 
plug it into the original equation to find the corresponding 
eigenvector v.



Principal Component Analysis

Standardization

Covariance Matrix Calculation

Eigenvector Calculation

Form Principal Components and Build Graph



Form Principal Components and Build Graph

Let the three eigenvalues of the three eigenvectors 𝑣", 𝑣#, , 𝑣% be 𝜆", 𝜆#, 𝜆% 
such that 𝜆" >= 𝜆# >= 𝜆%

Then, the principal components will be 𝑣", 𝑣#, , 𝑣%	and the variances they 
carry are in the ra[o of	𝜆", 𝜆#, 𝜆%

But if the eigenvectors are 
from the covariance matrix 

which represents the 
correlation of all the features, 

where will we be removing 
features?



Form Principal Components and Build Graph
But if the eigenvectors are 
from the covariance matrix 

which represents the 
correlation of all the features, 

where will we be removing 
features?

If the percentage of variance of a par[cular principal 
component is small enough, discard it. Youʹve now removed 
a dimension! Form a new matrix which only has the 
eigenvectors/principal components youʹve selected.

Let this matrix be called your Feature Vector.
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Now, it’s time to reorient the original data 
along these new axes



Form Principal Components and Build Graph

PC1

PC2

PC3



Form Principal Components and Build Graph

PC1

PC2
The third dimension was 
removed as it did not 
contribute much in terms 
of variance
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Principal Component Analysis

Linear transformation of existing features

Dimensionality reduction is to remove dimensions with low variances

Tradeoff between dimensionality vs. info. loss

Each PC is selected to maximize the explained variance in this direction of the remain data



A real-world application of PCA

IQ	testing!	

SAT Verbal

SAT Math
PC1 or g factor



Data Visualization

The wine dataset with 13 features and 3 classes.
Source: https://machinelearningmastery.com/principal-component-analysis-for-visualization/

https://scikit-learn.org/stable/datasets/toy_dataset.html


Feature Extraction

The wine dataset with 13 features and 3 classes.
Source: https://machinelearningmastery.com/principal-component-analysis-for-visualization/

Q: feature extraction vs. feature selection? 

https://scikit-learn.org/stable/datasets/toy_dataset.html


Image Compression

Source: https://towardsdatascience.com/image-compression-using-principal-component-analysis-pca-253f26740a9f



Noise Reduction

Source: https://stats.stackexchange.com/questions/247260/principal-component-analysis-eliminate-noise-in-the-data



Unsupervised Learning
Clustering
Dimension reduction  

Comfo
rt

Fashio
n

k=
6



Project



Typical steps to apply ML 

■ Data preprocessing
■ Trying different ML algorithms

➢ Training set, validation set, test set
■ Diagnostics

➢ More training samples
➢ Increase/decrease feature set
➢ Increase/decrease regularization 

■ Loop back  

81



A ML Project 

■ Why ML is a suitable approach
➢ Do not use ML for the purpose of using ML
➢ Evaluate existing approaches and room for improvement

■ Problem abstraction and formulation
➢ Set appropriate goals 
➢ Model complexity, data availability, evaluation 
➢ Domain knowledge critical 

■ Data collection and data cleaning
➢ What, where, and how

■ ML algorithms 
➢ This is often the “easy” part

■ Evaluation, sanity check, interpretation
■ Iterate the process  

82


